
I - INTBODUCTION 

PANEL'86 EXPODATA 

PRACTICAL ISSUES ON CONCURRENCY 
CONTROL lN DATABASE SYSTEMS 

M. R. S. Borges 
Universidade Federal do Rio de Janeiro 

Rio de Janeiro - Brasil 

3 

For the last few years the area of concurrency 
control in database systems has been the object of a lot of 
research {RQSE78, BERNSl, KOHL81, GARD821. Until mid 70's it was 
generally accepted that locking policies were the best way to 
solve conflicts in a multi-processing environment. However, with 
the rise of distri.buted systems, the research for alternative 
approaches started again. The reason for this was the fact that 
communication costs play an ímportant role on the overhead of 
process interaction. Also, because it is important to keep the 
site autonomy as the maximum possible. Severa! other 
alternatives have been proposed and many more will appear as was 
explained in {BERN82J. 

This paper does not introduce a new mechanism for 
concurrency control. Neither does it compare performance of 
different strategies. While these research works are considered 
quite important, we thought that would be interesting to throw 
some light on the practical aspects of thé subject. BY practical 
we mean those of benefit to real applications. This paper tries 
to demonstrate how the practical aspects relate to the 
research being carried out on the problem. 

It is our opinion that if some factors are taken 
into consideration, it can improve the performance and the 
usability of concurrency control mechanisms for database 
software. 

We examine three issues of database usagê as it 
relates to: 

- the notion of conflict; 
- the types of application; 
- integrated design. 

we show in each of the following sections how these 
three issues may affect the design decisions of a concurrency 
contról mechanism. 



4 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA 

Any set of transactions that access concurrently 
the same object in an incompatible mode (i.e. at least one is an 
update) is said to conflict IESWA761. The usual way to avoid 
conflicts is to serailize the conflicting access, in the same 
order in all objects. An attempt to override this rule would 
cause one of the following effects: 

- an inconsistent update; 
- a lost update; 
- obsolete versions apparent to the user; 
- inconsistencies apparent to the user. 

The first two effects occur when two update 
transactions are performed on the same object concurrently. The 
inconsistent update is the result of overlapping actions of 
update transactions on objects related by some integrity 
constraint. The lost update is a result of an update based on 
obsolete (but consistent) data. In other words inconsistencies 
are caused by inappropriate Reads within update transactions. The 
lost update is caused by either inappropriated Read or Write 
actions within update transactions. The reader is referred to 
IBORG861 for more details and examples. 

The last two effects may occur when processing Read 
and Update transactions in parallel. They do not constitute a 
problem for the database itself but for the user accessing it. 
This is true as long as the result of a read would not be used 
for further update, i.e. the Read action is part of a read-only 
transaction. The third effect occurs when the reads are issued on 
partially updated objects related bY some integrity constraint. 
The fourth is caused by anticipating a read access on an object 
with some previous update transaction pending on it. 

Whichever notion of conflict is followed, a 
mechanism is said to be correct if it prevents conflicts 
happening. In the case of update conflicts (first two effects), 
we . agree that there is no sense in relaxing the conditions which 
cause them. However, we believe that for the majority of 
applications is does not constitute a problem if the user sees an 
obsolete database (how obsolete it can be is dependent on the 
application). We see three main reasons for that. 

First, it is impossible for most applications to 
keep the databse in compass with the real world. it maybe the 
case that some facts are waiting to be stored in the database; 
then the version available is an obsolete one. Also there is no 
guarantee that the version the transaction was based on would be 
still valid when the user receives it, unless he prevents 
real world change occurring. It is our opinion that because of 
the nature of some applications, the effort the concurrency 
control mecanism makes to avoid obsolete versions for retrieval
only transactions is fruitless. 



PANEL'86 EXPODATA 5 

Second, other componente of the system may 
arbitrarily contribute to this obsolence. The network, for 
example, does not usually assure that the messages will be 
received in the order they were transmitted. In that case the 
order of queries would be changed inside the system and this can 
make the answers obsolete. 

Last but not least, the sys~em can benefit a lot 
from permiting more paralellism. Simulation studies on protocols 
which relax this condition show that the performance of the 
concurrency mechanism can improve substantially in the case of 
wquery predominant" databases IBORG85, BORG86!. 

These three resons show that obsolete versions are 
common-place in several applications. The users are naturally 
aware to this. The concurrency control mechanism should not 
bother in avoiding them unless the users exprese they want an 
wup-to-date" version. 

Actually, these arguments are proven not to be 
completely true for some mechanisms. The best example is the 
multiversion protocol IBERN831, which use obsolete version in 
case of a transaction arrives after a later update has been 
processed in the same object. The serializability theory only 
guarantees that the execution will be equivalent to some serial 
one IBERN821. This means that these protocols may permít a Read 
transaction to proceed even if a Write action, from a transaction 
which arrived earlier, is to be performed later on the same 
object. 

However, most of the mechanism do not permit Reads 
while Writes are in progress, even if a two-phase commit protocol 
ha~ been used. In the basic time-5tamping ordering approach an 
out-of-order Read can cause the abortion of update transaction 
IBERNSOI. In the optimistic approach, the validation of a Read 
transaction may cause the invalidation of an Update transaction 
later IKUNGSll. ln a multiversion protocol an Update transaction 
can be invalidated by a Read actien because the protocol does not 
àiferentiate between Reads for update and Reads for retrieval
only transactions IBERN831. 

The fourth effect is a more serious one. Relaxing 
the conditions which produce it would lead to more parallelism, 
but the result does not seem acceptable for most of applications. 
The only value of those results may be for statistical or 
uncompromised queries IBORG851. 

It is our op1nion that any concurrency control 
mechanism should provide the user with the option of relaxinQ the 
condit1ons which produce these last two effects. By doing this it 
can achieve better system performance when these effects do not 
matter, as estabilished by the application requirements. The 
concurrency control mechanism should be able to follow different 
protocols accordin9 to the user detinition of transaction. The 
transactions may be divided into two classes; the normal and the 



6 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA 

weak elas~ of transactions. Some recent proposals modifying the 
basic appraches show that research is starting to be oriented on 
this direction IUNLA83, GARC83l. 

III - ~ QE ÀPLICATIONS 

It hàs been the conclusión óf several papers which 
compare concurrency control mechanism that the performance is 
very dependent, apart from other things, on the type of 
application {BADA80, LIN82, LIN83, KOHL83, PEIN831. There is 
general recognition that any mechanism caft outperform another if 
we select the appropriate aplication. Because of · the 
characteristics of the concurréncy problem, it seems unlikely 
that any future approach can claim that it has the best 
performance in all situations. 

Now, these mechanism are supposed to be implemented 
in database softwares for general use. How should the user (DBA} 
react if he knows that the kind of aplication he has is not of 
the type in which the mechanism produces the best resulte? Should 
he have to choose the package according? 

We believe the answer to this question is that the 
software has to allow more flexibility on the concurrency control 
mechanisms. This can be achieved by Ptoviding the software with a 
selection of concurrency control strategies similar, for example, 
to the choice it provides for access methods. The concurrency 
control should be seen as a interchangeable component .in which 
the user (DBA} may have the option of sélecting tqe most 
appropriate strategy. 

Another alternative, perhaps more feasible, is to 
design a mechanism which can make the decision on thé concurrency 
control protocol dynamicall y, according tó the kind of 
transactions running. An exami;>le is thé varíabie' Qranularity 
lockino protocol IKORT8ll. In that approach, the size (Qranule) 
of the object referenced by the transaction. 

we think that some research effort should be 
directed to desion a more general mechanism which can be 
sensitive to the k:l.nd of transactions running on thé system. At 
the moment it seems clear that those mechanism should incorporate 
ideas · from various approaches in order to achieve great 
efficiency in all cases. 



PANEL'86 EY.PODATA 7 

IV - IHTEGBATED DESIGN 

Most papers about concurrency control tend to 
analyse the problem as if it were the central issue in physical 
design in database systems. All the other parts of the system are 
seen only as they affect the concurrency mechanism. While this 
approach is useful for studying the algorithm• it may cause 
several problema when we try to integrate the mechanism with the 
other components of the system. 

The efficiency of the concurrency control is 
usually measured by the throughput produced from the input load. 
It has been demonstrated somewhere that this is very dependent on 
the characteristics of the load. Furthermore, we claim that the 
performance of a concurrency control mechanism measured by its 
throughput, does not necessarily mean the best overall 
performance of the system. 

That aspect is being ignored by researchers when 
comparing different mechanisms. The throughput produced by a 
concurrency control mechanism is a potential one because it 
depends on parallelism in other parts of the system (disks, 
lines, etc). As the performance of a mechanism is very sensitive 
to parallel execution, we can have the wdo-all-for-nothin~ 

effectw IBORG851. This occurs when the mechanism spends a lot of 
time is discovering a non-conflictant parallel execution, yet at 
the end the actions would be serialized because of other 
constraints. 

In our opinion, the search for better concurrency 
control protocols must be oriented to one which produces the best 
overall performance of the system. In saying this, we mean that 
concurrency control implementation must be sensitive to the 
particularities of the other componente of the database and not 
viewed as a stand-alone feature. 

Another aspect, perhaps not so visible but also 
very important, is to investigate how the concurrency mechanism 
affacts other componente of the system. The best example is the 
recovery protocol. Some concurrency mechanism are so complex that 
would turn it almost impossible to recover from a crash without 
lmplementinQ an algorithm as complex as the concurrency mechanism 
ltself. It ls aasumed that a history ought to be reproducible 
when we have a crash. In cther wcrds ."i ~.·ecovenr from a crash must 
not alter the effect of transactiona already commited. However, 
in ~om~ cases, in order to reproduce such history the recovery 
mechanlam may have evento reproduce abortions (777). More 
lmpartant, the recovery can be very expensive and cause long 
delaya in the syetem. 



8 Xll CONFERENCIA LATINOAMERICANA DE INFORMATICA 

V - CONCLUSIONS 

We have presented in this paper some ideas of how 
to deal with concurrency control in a more realistic way. While 
it has been impprtant to search for new aloorithms we think some 
effort should now be directed to producino mechanisms for use in 
real systems and not in hypothetical ones. We believe that at the 
moment there is a oap between the research and the implementation 
that has not been properly filled. 

There are other aspects to be taken into 
consideration which were not covered in this paper. One .of them 
is the uniformity of processino. There is little sense, for real 
applications, in arbitrarily speeding some transactions if that 
causes unacceptable delays on other transactions. (for example, 
dueto sucessive fails). 

Ph.D. 
the 
the 
the 

All these ideas has been investigated in a 
project IBORG861 which simulates the performance of 
mechanisms in practical situations. We incorporated in 
simulation model different kind of transactions which eases 
notion of conflict. We are experimenting with a wide range 
application types (from qUery to update predominant system). 
modeled all the componente of a database at the physical level 
order to examine the effects the concurrency mechanism has 
other componente as well. 

of 
We 
in 
on 

REFERENCES 

IBADA801 

IBERN80l 

IBERN811 

IBERN821 

Badal, D.Z. The analysis of the effects of 
concurrency control on distributed databases system 
performmance. 6th VLDB (1980) pp. 376-383 .. 

Bernstein, P. and Goodman, N. Timestamp-based 
aloorithms for concurrency control in distributed 
databases, 6th VLDB (1980) pp. 275-284. 

Bernstein, P. and Goodman, N. : Concurrency control 
in distributed databases svstems. ACM Computing 
Surveys V13 N2 (June 1981) pp. 185-221. 

Bernstein, P. and Goodman, N. A sophisticate's 
introduction to distributed database concurrency 
control. 8th VLDB (1982) pp. 62-76. 



IBERN831 

IBORG85} 

IBORG861 

IESWA761 

{GARC831 

IGARD821 

IKOHL811 

IKOHL831 

IKORT811 

IKUNG811 

ILIN 821 

ILIN 831 

PANEL'86 EXPODATA 9 

Bernstein, P. and Goodman, N. Multiversion 
concurrency contro1 - Theory and Algorithms. ACM TODS 
V8 N4 (December 1983) pp. 465-483. 

Borges, M.R. Twords a flexible mechanism for 
concurrency control in database systems. 4th British 
National Conference on Databases. Keele, UK (1985) 
pp. 39-60. 

Borges, M.R. : A flexible mechanism for concurrency 
control in systems. Ph.D. Thesis 1986. School of 
Information Systems, UniversitY of East Anglia, UK. 

Eswaran, K.P., Gray, J. Lorie, R.A. and Traiger, I. 
The notions of consistency and predicate locks in a 
database system. Comm. · ACM V19 N11 (November 1976) 
pp, 624-633. 

Garcia-Molina, H. oUsing semantic knowledge for 
transaction processing in ·a distributed database. ACM 
TODS V8 N2 (June 1983) pp. 186-213. 

Gardarin, G. and Melkanoff, M. : Concurrency control 
principies in distributed and centralized databases. 
INRIA Rapport de Recherche no. 113 (January 1982). 

Kohler, W.H. A 
synchronization and 
systems. ACM Computing 
149-183. 

survey of techniques for 
recovery in decentralized 

Surveys V13 N2 (June 1981) pp. 

Kohler, W.H., Wilner, K.C. and Stankovic J.A. : An 
experimental comparison of locking policies in a 
testbed database system. ACM SIGMOD conference (1983) 
pp. 108-119. 

Korth, H.F. : A deadlock-free, variable gralularity 
1ooking protocol. Proc. 5th Berkeley Workshop on 
Dist. Data Manag. and Computer Networks. (February 
1981) pp. 105-121. 

Kung, H.T. and Robinson J.T. : on optimistic methods 
for concurrency control. ACM TODS V6 N2 (June 1981) 
pp. 213-226. 

Lin, W.K. and Nolte, J. : Performance of two-phase 
looking. Proc. 6th Berkeley Workshop on Dist. Data 
Manag. and Comp. Network. (February 1982) pp. 
131-160. 

Lin, W.K. and Nolte, J. : Basic timestamp, multiple 
version, and two-phase looking. 9th VLDB (1983) pp. 
109-119. 



10 

IPEIN831 

IROSE781 

IUNLA831 

XII CONFERENCIA LATINOAMERICANA DE INFORMATICA 

Peinl, P. and Reuter, A. Empirical comparision of 
database concurrency control shemes. 9th VLDB (1983) 
pp. 97-108. 

Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M. : 
System level concurrency control for distributed 
database systems. ACM TODS V3 N2 (June 1978) pp. 
178-198. 

Unlad, R., Praedel, U, and Schlageter, G.: Design 
.alternatives for optimistic concurrency control 
schemes. 2nd ICOD (International Conf. on Databases). 
(August 1983). pp. 288-297. 


